Detection and Classification of White Blood Cells through Deep Learning Techniques

Samir Abou El-Seoud, Muaad Hammuda Siala, Gerard McKee


Leukemia is one of the deadliest diseases in human life, it is a type of cancer that hits blood cells. The task of diagnosing Leukemia is time consuming and tedious for doctors; it is also challenging to determine the level and type of Leukemia. The diagnoses of Leukemia are achieved through identifying the changes on the White blood Cells (WBC). WBCs are divided into five types: Neutrophils, Eosinophils, Basophils, Monocytes, and Lymphocytes. In this paper, the authors propose a Convolutional Neural Network to detect and classify normal white blood cells. The program will learn about the shape and type of normal WBC by performing the following two tasks. The first task is identifying high level features of a normal white blood cell. The second task is classifying the normal white blood cell according to its type. Using a Convolutional Neural Network CNN, the system will be able to detect normal WBCs by comparing them with the high-level features of normal WBC. This process of identifying and classifying WBC can be vital for doctors and medical staff to make a decision. The proposed network achieves an accuracy up to 96.78% with a dataset including 10,000 blood cell images.


Image Processing; Convolutional Neural Network; Deep learning; Histology

Full Text:


International Journal of Online and Biomedical Engineering (iJOE) – eISSN: 2626-8493
Creative Commons License
Scopus logo Clarivate Analyatics ESCI logo IET Inspec logo DOAJ logo DBLP logo EBSCO logo Ulrich's logo Google Scholar logo MAS logo